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Abstract
As predictive models increasingly assist human experts (e.g.,
doctors) in day-to-day decision making, it is crucial for ex-
perts to be able to explore and understand how such models
behave in different feature subspaces in order to know if and
when to trust them. To this end, we propose Model Under-
standing through Subspace Explanations (MUSE), a novel
model agnostic framework which facilitates understanding of
a given black box model by explaining how it behaves in
subspaces characterized by certain features of interest. Our
framework provides end users (e.g., doctors) with the flexibil-
ity of customizing the model explanations by allowing them
to input the features of interest. The construction of expla-
nations is guided by a novel objective function that we pro-
pose to simultaneously optimize for fidelity to the original
model, unambiguity and interpretability of the explanation.
More specifically, our objective allows us to learn, with opti-
mality guarantees, a small number of compact decision sets
each of which captures the behavior of a given black box
model in unambiguous, well-defined regions of the feature
space. Experimental evaluation with real-world datasets and
user studies demonstrate that our approach can generate cus-
tomizable, highly compact, easy-to-understand, yet accurate
explanations of various kinds of predictive models compared
to state-of-the-art baselines.

Introduction
The successful adoption of predictive models for real world
decision making hinges on how much decision makers (e.g.,
doctors, judges) can understand and trust their functional-
ity. Only if decision makers have a clear understanding of
the behavior of predictive models, they can evaluate when
and how much to depend on these models, detect potential
biases in them, and develop strategies for further model re-
finement. However, the increasing complexity and the pro-
prietary nature of predictive models employed today is mak-
ing this problem harder (Ribeiro, Singh, and Guestrin 2016),
thus, emphasizing the need for tools which can explain these
complex black boxes in a faithful and interpretable manner.

Prior research on explaining black box models can be
categorized as: 1) Local explanations, which focus on ex-
plaining individual predictions of a given black box clas-
sifier (Ribeiro, Singh, and Guestrin 2016; 2018; Koh and
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Liang 2017) and 2) Global explanations, which focus on ex-
plaining model behavior as a whole, often by summarizing
complex models using simpler, more interpretable approxi-
mations such as decision sets or lists (Lakkaraju, Bach, and
Leskovec 2016; Letham et al. 2015). In this paper, we focus
on a new form of explanation that is designed to help end
users (e.g., decision makers such as judges, doctors) gain
deeper understanding of model behavior: a differential ex-
planation that describes how the model logic varies across
different subspaces of interest in a faithful and interpretable
fashion. To illustrate, let us consider a scenario where a doc-
tor is trying to understand a model which predicts if a given
patient has depression or not. The doctor might be keen on
understanding how the model makes predictions for differ-
ent patient subgroups (See Figure 1 left). Furthermore, she
might be interested in asking questions such as ”how does
the model make predictions on patient subgroups associated
with different values of exercise and smoking?” and might
like to see explanations customized to her interest (See Fig-
ure 1 right). The problem of constructing such explanations
has not been studied by previous research aimed at under-
standing black box models.

Here, we propose a novel framework, Model Understand-
ing through Subspace Explanations (MUSE), which con-
structs global explanations of black box classifiers which
highlight their behavior in subspaces characterized by fea-
tures of user interest. To the best of our knowledge, this is
the first work to study the notion of incorporating user in-
put when generating explanations of black box classifiers
while successfully trading off notions of fidelity, unambi-
guity and interpretability. Our framework takes as input a
dataset of instances with semantically meaningful or inter-
pretable features (e.g. age, gender), and the corresponding
class labels assigned by the black box model. It also ac-
cepts as an optional input a set of features that are of in-
terest to the end user in order to generate explanations tai-
lored to user preferences. Our framework then maps these
inputs to a customized, faithful, and interpretable explana-
tion which succinctly summarizes the behavior of the given
model. We employ a two-level decision set representation,
where the if-then clauses at the outer level describe the sub-
spaces, and the inner if-then clauses explain the decision
logic employed by the black box model within the corre-
sponding subspace (See Figure 1 left). The two-level struc-



Figure 1: Explanations generated by our framework MUSE to describe the behavior of a 3-level neural network trained on
depression dataset. MUSE generates explanation of the model without user input (left). It automatically selects features for
defining subspaces by optimizing for fidelity, unambiguity, and interpretability. MUSE generates customized explanations based
on the features of interest input by the end user - exercise and smoking (right).

ture which decouples the descriptions of subspaces from the
decision logic of the model naturally allows for incorpo-
rating user input when generating explanations. In order to
construct an explanation based on the above representation,
we formulate a novel objective function which can jointly
reason about various relevant considerations: fidelity to the
original model i.e., mimicking the original model in terms
of assigning class labels to instances, unambiguity in de-
scribing the model logic used to assign labels to instances,
and interpretability by favoring lower complexity i.e., fewer
rules and predicates etc. While exactly optimizing our objec-
tive is an NP-hard problem, we prove that our optimization
problem is a non-normal, non-monotone submodular func-
tion with matroid constraints which allows for provably near
optimal solutions.

We evaluated the fidelity and interpretability of the ex-
planations generated by our approach on three real world
datasets: judicial bail decisions, high school graduation out-
comes, and depression diagnosis. Experimental results indi-
cate that our approach can generate much less complex and
high fidelity explanations of various kinds of black box mod-
els compared to state-of-the-art baselines. We also carried
out user studies in which we asked human subjects to reason
about a black box model’s behavior using the explanations
generated by our approach and other state-of-the-art base-
lines. Results of this study demonstrate that our approach
allows humans to accurately and quickly reason about the
behavior of complex predictive models.

Related Work
Explaining Model Behavior: One approach for inter-
pretability is learning predictive models which are hu-
man understandable (e.g., decision trees (Rokach and Mai-
mon 2005), decision lists (Letham et al. 2015), decision
sets (Lakkaraju, Bach, and Leskovec 2016), linear mod-
els, generalized additive models (Lou, Caruana, and Gehrke
2012)). Recent research focused on explaining individual
predictions of black box classifiers (Ribeiro, Singh, and
Guestrin 2016; Koh and Liang 2017). Ribeiro et. al.,’s ap-
proach of approximating global behavior of black box mod-
els through a collection of locally linear models create ambi-

guity as it does not clearly specify which local model applies
to what part of the feature space. Global explanations can
also be generated by approximating the predictions of black
box models with interpretable models such as decision sets,
decision trees. However, the resulting explanations are not
suitable to answer deeper questions about model behavior
(e.g., ’how the model logic differs across patient subgroups
associated with various values of exercise and smoking?’).
Furthermore, existing frameworks do not jointly optimize
for fidelity, unambiguity, and interpretability.

Visualizing and Understanding Specific Models: The
problem of visualizing how certain classes of models such
as deep neural networks are making predictions has attracted
a lot of attention in the recent past (Yosinski et al. 2015;
Zintgraf et al. 2017). Zintgraf et. al. (Zintgraf et al. 2017)
focused on visualizing how a deep neural network responds
to a given input. Shrikumar et. al. (Shrikumar et al. 2016)
proposed an approach to determine the important features
of deep neural networks. Furthermore, there exist tools and
frameworks to visualize the functionality of different classes
of models such as decision trees (Teoh and Ma 2003), SVMs
etc. (Jakulin et al. 2005). However, unlike our framework,
these approaches are tailored to a particular class of models
and do not generalize to any black box model.

Our Framework
Here, we describe our framework, Model Understanding
through Subspace Explanations (MUSE), which is designed
to address the problem of explaining black box models while
highlighting their behavior w.r.t. specific subspaces of in-
terest. As part of this discussion, we examine how to: (1)
design a representation which enables us to not only con-
struct faithful, unambiguous, and interpretable explanations
but also readily incorporate user input for customization,
(2) quantify the notions of fidelity, unambiguity, and inter-
pretability in the context of the representation we choose, (3)
formulate an optimization problem which effectively trade-
offs fidelity, unambiguity, and interpretability, (4) solve the
optimization problem efficiently, and (5) customize explana-
tions based on user preferences (See 3 for a sketch of MUSE
workflow).



Our Representation: Two Level Decision Sets
The most important criterion for choosing a representation is
that it should be understandable to decision makers who are
not experts in machine learning, readily approximate com-
plex black box models, and allow us to incorporate human
input when generating explanations. We choose two level
decision sets as our representation. The basic building block
of this structure is a decision set, which is a set of if-then
rules that are unordered. The two level decision set can be
regarded as a set of multiple decision sets, each of which
is embedded within an outer if-then structure, such that the
inner if-then rules represent the decision logic employed by
the black box model while labeling instances within the sub-
space characterized by the conditions in the outer if-then
clauses. Consequently, we refer to the conditions in the outer
if-then rules as subspace descriptors and the inner if-then
rules as decision logic rules (See Figure 1). This two level
nested if-then structure allows us to clearly specify how the
model behaves in which part of the feature space. Further-
more, the decoupling of the subspace descriptors and the de-
cision logic rules allows us to readily incorporate user input
and describe subspaces that are of interest to the user in a
compact fashion.

While the expressive power of two level decision sets
is the same as that of other rule based models (e.g., deci-
sion sets/lists/trees), the nesting of if-then clauses in a two
level decision set representation enables the optimization al-
gorithm (more details later in this Section) to select sub-
space descriptors and decision logic rules such that higher
fidelity to the original model can be obtained with minimal
complexity thus resulting in more compact approximations
compared to conventional decision sets (details in experi-
ments section). In addition, two level decision set represen-
tation does not have the pitfalls associated with decision
lists where understanding a particular rule requires reason-
ing about all the previously encountered rules because of the
if-else-if construct (Lakkaraju, Bach, and Leskovec 2016).

Definition 1. A two level decision set R is a set
of rules {(q1, s1, c1)(q2, s2, c2) · · · (qM , sM , cM )} where
qi and si are conjunctions of predicates of the form
(feature, operator, value) (eg., age ≥ 50) and ci is a
class label. qi corresponds to the subspace descriptor and
(si, ci) together represent the inner if-then rules (decision
logic rules) with si denoting the condition and ci denoting
the class label (See Figure 1). A two level decision set as-
signs a label to an instance x as follows: if x satisfies exactly
one of the rules i i.e., x satisfies qi ∧ si, then its label is the
corresponding class label ci. If x satisfies none of the rules
inR, then its label is assigned using a default function and if
x satisfies more than one rule inR then its label is assigned
using a tie-breaking function.

In our experiments, we employ a default function which
computes the majority class label (assigned by the black box
model) of all the instances in the training data which do not
satisfy any rule inR and assigns them to this majority label.
For each instance which is assigned to more than one rule
in R, we break ties by choosing the rule which has a higher
agreement rate with the black box model. Other forms of

default and tie-breaking functions can be easily incorporated
into our framework.

Quantifying Fidelity, Unambiguity, and
Interpretability
To meaningfully describe the behavior of a given black box
model, it is important to construct an explanation that is not
only faithful to the original model but also unambiguous and
interpretable. Below we explore each of these desiderata in
detail and discuss how to quantify them w.r.t a two level de-
cision set explanation R with M rules (See Definition 1),
a black box model B, and a dataset D = {x1,x2 · · ·xN}
where xi captures the feature values of instance i. We treat
the black box model B as a function which takes an instance
x ∈ D as input and returns a class label.

Fidelity: A high fidelity explanation should faithfully
mimic the behavior of the black box model. While different
notions of fidelity can be defined, our metric of choice quan-
tifies the disagreement between the labels assigned by the
explanation and the labels assigned by the black box model.
We define disagreement(R) as the number of instances for
which the label assigned by the black box model B does not
match the label c assigned by the explanationR (Table 1).

Unambiguity: An unambiguous explanation should pro-
vide unique deterministic rationales for describing how the
black box model behaves in various parts of the feature
space. To quantify this notion, we introduce two metrics: 1)
ruleoverlap(R) which captures the number of additional ra-
tionales (beyond 1) provided by the explanation R for each
instance in the data. Higher the value of this metric, higher
the ambiguity of the explanation (Table 1). 2) cover(R)
which captures the number of instances in the data that sat-
isfy some rule in R. Our goal here would be to minimize
ruleoverlap(R) and maximize cover(R). These two notions
together ensure that the explanation we generate describes
as much of the feature space as unambiguously as possible
(Table 1).

Interpretability: Interpretability metric quantifies how
easy it is to understand and reason about the explanation.
While we choose an interpretable representation (e.g., two
level decision sets), how interpretable the explanation is de-
pends on its complexity (For example, a decisions set with
many rules and high depth would not be interpretable for a
user).

We quantify the interpretability of explanation R using
the following metrics (Table 1): size(R) is the number of
rules (triples of the form (q, s, c)) in the two level decision
setR. maxwidth(R) is the maximum width computed over
all the elements in R, where each element is either a condi-
tion of some decision logic rule s or a subspace descriptor q,
and width(s) is the number of predicates in the condition s.
Similarly, width(q) is defined as the total number of pred-
icates of the subspace descriptor q. numpreds(R) counts
the number of predicates in R including those appearing in
both the decision logic rules and subspace descriptors. Note
that the predicates of subspace descriptors are counted mul-
tiple times as a subspace descriptor q could potentially ap-
pear alongside multiple decision logic rules. numdsets(R)



Fidelity disagreement(R) =
M∑
i=1
|{x | x ∈ D,x satisfies qi ∧ si,

B(x) 6= ci}|

Unambiguity
ruleoverlap(R) =

M∑
i=1

M∑
j=1,i 6=j

overlap(qi ∧ si, qj ∧ sj)

cover(R) = |{x | x ∈ D, x satisfies qi ∧ si where i ∈ {1 · · ·M}}|

Interpretability

size(R): number of rules (triples of the form (q, s, c)) inR

maxwidth(R) = max

e∈
M⋃
i=1

(qi∪si)

width(e)

numpreds(R) =
M∑
i=1

width(si) + width(qi)

numdsets(R) = |dset(R)| where dset(R) =
M⋃
i=1

qi

featureoverlap(R) =
∑

q∈dset(R)

M∑
i=1

featureoverlap(q, si)

Table 1: Metrics used in the Optimization Problem

Algorithm 1 Optimization Procedure (Lee et al. 2009)
1: Input: Objective f , domainND×DL×C, parameter δ, number of constraints
k

2: V1 = ND ×DL× C
3: for i ∈ {1, 2 · · · k + 1} do . Approximation local search procedure
4: X = Vi; n = |X|; Si = ∅
5: Let v be the element with the maximum value for f and set Si = v
6: while there exists a delete/update operation which increases the value of Si

by a factor of at least (1 + δ
n4 ) do

7: Delete Operation: If e ∈ Si such that f(Si\{e}) ≥ (1+ δ
n4 )f(Si),

then Si = Si\e
8:
9: Exchange Operation If d ∈ X\Si and ej ∈ Si (for 1 ≤ j ≤ k) such

that
10: (Si\ej) ∪ {d} (for 1 ≤ j ≤ k) satisfies all the k constraints and
11: f(Si\{e1, e2 · · · ek} ∪ {d}) ≥ (1 + δ

n4 )f(Si), then Si =

Si\{e1, e2, · · · ek} ∪ {d}
12: end while
13: Vi+1 = Vi\Si
14: end for
15: return the solution corresponding to max{f(S1), f(S2), · · · f(Sk+1)}

counts the number of unique subspace descriptors (outer if-
then clauses) inR.

In a two-level decision set, subspace descriptors and deci-
sion logic rules have different semantic meanings i.e., each
subspace descriptor characterizes a specific region of the
feature space, and the corresponding inner if-then rules spec-
ify the decision logic of the black box model within that re-
gion. To make the distinction more clear, we minimize the
overlap between the features that appear in subspace de-
scriptors and those that appear in decision logic rules. To
quantify this, we compute for each pair of subspace de-
scriptor q and decision logic rule s, the number of fea-
tures that occur in both q and s (featureoverlap(q, s)) and
then sum up these counts. The resulting sum is denoted as
featureoverlap(R).

Objective Function
We formulate an objective function that can jointly optimize
for fidelity to the original model, unambiguity and inter-
pretability of the explanation. We assume that we are given
as inputs a dataset D, labels assigned to instances in D by
black box model B, a set of possible class labels C, a can-
didate set of conjunctions of predicates (Eg., Age ≥ 50 and
Gender = Female) ND from which we can pick the sub-

space descriptors, and another candidate set of conjunctions
of predicates DL from which we can choose the decision
logic rules. In practice, a frequent itemset mining algorithm
such as apriori (Agrawal, Srikant, and others ) can be used
to generate the candidate sets of conjunctions of predicates.
If the user does not provide any input, bothND and DL are
assigned to the same candidate set generated by apriori.

To facilitate theoretical analysis, the metrics defined in Ta-
ble 1 are expressed in the objective function either as non-
negative reward functions or constraints. To construct non-
negative reward functions, penalty terms (metrics in Table 1)
are subtracted from their corresponding upper bound values
(Pmax, Omax, O′max, Fmax) which are computed with re-
spect to the sets ND and DL.
f1(R) = Pmax − numpreds(R), where Pmax = 2 ∗ Wmax ∗ |ND| ∗ |DL|
f2(R) = Omax − featureoverlap(R), whereOmax =Wmax ∗ |ND| ∗ |DL|

f3(R) = O′
max − ruleoverlap(R), whereO′

max = N × (|ND| ∗ |DL|)2

f4(R) = cover(R)

f5(R) = Fmax − disagreement(R), where Fmax = N × |ND| ∗ |DL|

where Wmax is the maximum width of any rule in either
candidate sets. The resulting optimization problem is:

R⊆ND×DL×C

5∑
i=1

λifi(R) (1)

s.t. size(R) ≤ ε1, maxwidth(R) ≤ ε2, numdsets(R) ≤ ε3
λ1 · · ·λ5 are non-negative weights which manage the rel-

ative influence of the terms in the objective. These can be
specified by an end user or can be set using cross validation
(details in experiments section). The values of ε1, ε2, ε3 are
application dependent and need to be set by an end user.
Theorem 1. The objective function in Eqn. 1 is non-
normal, non-negative, non-monotone, submodular and the
constraints of the optimization problem are matroids.

Proof. See Appendix.

Optimization Procedure
While exactly solving the optimization problem in Eqn.
1 is NP-Hard (Khuller, Moss, and Naor 1999), the spe-
cific properties of the problem: non-monotonicity, submod-
ularity, non-normality, non-negativity and the accompany-
ing matroid constraints allow for applying algorithms with
provable optimality guarantees. We employ an optimization
procedure based on approximate local search (Lee et al.
2009) which provides the best known theoretical guarantees
for this class of problems. More specifically, the procedure
we employ provides an optimality guarantee of 1

k+2+1/k+δ

where k is the number of constraints and δ > 0. In the case
of our problem with 3 constraints, this factor boils down to
∼ 1/5 approximation.

The pseudocode for the optimization procedure is in Al-
gorithm 1. The solution set is initially empty (line 4) and
then an element v with the maximum value for the objective
function is added (line 5). This is followed by a sequence of
delete and/or exchange operations (lines 6 – 12) until there
is no other element remaining to be deleted or exchanged
from the solution set. This entire process is repeated k + 1
times (line 13) and the solution set with the maximum value
is returned as the final solution (line 15).



Incorporating User Input
A distinguishing characteristic of our framework is being
able to incorporate user feedback to customize explana-
tions. As Figure 1 demonstrates, customizing the explana-
tion based on features of interest, namely exercise and smok-
ing (Figure 1 right) makes it easier to understand how model
logic varies for different values of these features. When a
user inputs a set of features that are of interest to him, we
simply restrict the candidate set of predicates ND from
which subspace descriptors are chosen (See Objective Func-
tion) to comprise only of those predicates with features that
are of interest to the user. This will ensure that the subspaces
in the resulting explanations are characterized by the fea-
tures of interest. Furthermore, the metric featureoverlap(R)
and the term f2(R) of our objective function ensure that the
features that appear in subspace descriptors do not appear in
the decision logic rules there by creating a clear demarca-
tion.

Experimental Evaluation
We begin this section by comparing our approach with state-
of-the-art baselines on real-world datasets w.r.t the fidelity
vs. interpretability trade-offs and unambiguity of the gener-
ated explanations. We then discuss the results of a user study
that we carried out to evaluate how easy it is for humans to
reason about the behavior of black box models using the ex-
planations generated by our framework.

Datasets We evaluate our framework on the following
real world datasets: 1) A dataset of bail outcomes collected
from various U.S. courts during 1990-2009 (Lakkaraju,
Bach, and Leskovec 2016) comprising of demographic in-
formation and details of past criminal records for about 86K
defendants. Each defendant is assigned a class label based
on whether he/she has been released on bail or locked up.
2) A dataset of about 21K high school student perfor-
mance (Lakkaraju, Bach, and Leskovec 2016) records col-
lected from a school district between 2012-2013 with vari-
ous details such as grades, absence rates, suspension history.
The class label of each student indicates if he/she graduated
high school on time, dropped out, or encountered a delay
in graduation. 3) Depression diagnosis dataset collected by
an online health records portal comprising of medical his-
tory, symptoms, and demographic information of about 33K
individuals. Each individual has either been diagnosed with
depression or is healthy.

Baselines We benchmark the performance of our frame-
work against the following baselines: 1) Locally inter-
pretable model agnostic explanations (LIME) (Ribeiro,
Singh, and Guestrin 2016) 2) Interpretable Decision Sets
(IDS) (Lakkaraju, Bach, and Leskovec 2016) 3) Bayesian
Decision Lists (BDL) (Letham et al. 2015). While IDS and
BDL were developed as stand alone interpretable classifiers,
we employ them to explain other black box models by treat-
ing the instance labels assigned by black box models as the
ground truth labels. Since LIME approximates black box
classifiers using multiple locally linear models, the approx-
imations created by LIME and our approach have represen-
tational differences. To facilitate fair comparison, we con-

struct a variant of LIME known as LIME-DS where each
local model is a decision set (a set of if-then rules) instead
of being a linear model.

Experimental Setup We generate explanations of mul-
tiple classes of models: deep neural networks, gradient
boosted trees, random forests, decision trees, SVM. Due to
space constraints, we present results with a deep neural net-
work of 5 layers in this section, however our findings gener-
alize to other model classes. Our optimization problem has
the following parameters λ1 · · ·λ5 (scaling coefficients) and
ε1 · · · ε3 (constraint values). We employed a simple tuning
procedure to set these parameters (details in Appendix). We
set other parameters as follows: ε1 = 20, ε2 = 7, and ε3 = 5.
Support threshold for Apriori algorithm was set to 1%.

Experimentation with Real World Data
Analyzing the Tradeoffs between Fidelity and Inter-
pretability To understand how effectively different ap-
proaches trade-off fidelity with interpretability, we plot fi-
delity vs. various metrics of interpretability (as outlined
in the previous section) for explanations generated by our
framework (without user input regarding features of inter-
est) and other baselines. We define fidelity as the fraction of
instances in the data for which the label assigned by the ex-
planation is the same as that of the black box model predic-
tion. Figures 2a and 2b show the plots of fidelity vs. number
of rules (size) and fidelity vs. average number of predicates
(ratio of numpreds to size) respectively for the explanations
constructed using MUSE, LIME-DS, IDS, and BDL. These
results correspond to explanations of a 5 layer deep neural
network trained on the depression diagnosis data. Similar re-
sults were observed with other data sets and black box model
types (See Appendix). It can be seen from Figure 2a that our
framework (MUSE) and IDS achieve the best trade-offs be-
tween fidelity and number of rules. Furthermore, Figure 2b
shows that our framework MUSE significantly outperforms
all the other baselines when trading off fidelity with average
number of predicates per rule. For instance, at an average
width of 10 predicates per rule, explanations generated by
MUSE already reach a fidelity of about 80% whereas expla-
nations output by other approaches require at least 20 pred-
icates per rule to attain this level of fidelity (Figure 2b).
These results demonstrate that the explanations produced by
MUSE provide significantly better trade-offs of fidelity vs.
complexity compared to other state-of-the-art baselines.

Evaluating Unambiguity of Explanations We can read-
ily evaluate the unambiguity of approximations constructed
by our approach MUSE, IDS, BDL using two of the metrics
outlined in previous section, namely, ruleoverlap and cover.
Note that decision list representation by design achieves the
optimal values of zero for ruleoverlap andN for cover since
each else-if clause ensures that every instance satisfies a sin-
gle rule in the list and else clause ensures that no instance
is left uncovered. We found that the approximations gener-
ated using IDS and our approach also result in low values of
ruleoverlap (between 1% and 2%) and high values for cover
(95% to 98%). LIME is excluded from this comparison since
it does not even specify which local model is applicable to
what part of the feature space.
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Approach Human Accuracy Avg. Time (in secs.)

MUSE 94.5% 160.1
(No customization)

IDS 89.2% 231.1
BDL 83.7% 368.5

MUSE 98.3% 78.3
(Customization)

(c) Results of User Study
Figure 2: Evaluating our framework MUSE: a & b) Fidelity vs. interpretability trade Offs for a 5-layer neural network trained
on depression diagnosis data. c) Results of user study.

Evaluating Human Understanding of Explanations
Here, we report the results of three user studies that were
designed to evaluate the ease with which users can under-
stand and reason about the behavior of black box models
using our explanations. The explanations that we showed to
users have been constructed by approximating a 5 layer deep
neural network trained on depression diagnosis data.

Comparing rule based approximations (task 1) We de-
signed an online user study with 33 participants, where each
participant was randomly presented with the explanations
generated by one of the following approaches: 1) our ap-
proach MUSE 2) IDS 3) BDL. Participants were asked 5
questions, each of which was designed to test their under-
standing of the model behavior (as depicted by the explana-
tion) in different parts of feature space. An example ques-
tion is: Consider a patient who is female and aged 65 years.
Based on the approximation shown above, can you be abso-
lutely sure that this patient is Healthy? If not, what other
conditions need to hold for this patient to be labeled as
Healthy? These questions closely mimic decision making in
real-world settings where decision makers such as doctors,
judges would like to reason about model behavior in certain
parts of the feature space. The answers to these questions
could be objectively judged as right or wrong based on the
decision logic encoded by the explanation. Based on this,
we computed the accuracy of the answers provided by users.
We also recorded the time taken to answer each question and
used this to compute the average time spent (in seconds) on
each question. Figure 2c (top) shows the results obtained us-
ing explanations from MUSE (without customization), IDS,
and BDL. It can be seen that user accuracy associated with
our approach was higher than that of IDS, BDL. In addition,
users were about 1.5 and 2.3 times faster when using our ex-
planations compared to those constructed by IDS and BDL
respectively.

Customizing Explanations We measured the benefit ob-
tained when the explanation presented to the user is cus-
tomized w.r.t to the question the user is trying to answer.
For example, imagine the question above now asking about
a patient who smokes and does not exercise. Whenever a
user is asked this question, we showed him/her an explana-
tion where exercise and smoking appear in the subspace de-
scriptors (See Figure 1 (right)) thus simulating the effect of
the user trying to explore the model w.r.t these features. We
recruited 11 participants for this study and we asked each

of these participants the same 5 questions as those asked
in task 1. Table 2c (bottom row) shows the results of our
model customized to the question being answered. In com-
parison to the results given in the first study, it can be seen
that the time taken to answer questions is almost reduced
in half compared to the setting where we showed users the
same explanation (which is not customized to the question
being asked) each time. In addition, answers are also more
accurate, thus, demonstrating that allowing users to explore
the model behavior from different perspectives can be very
helpful in reasoning about its behavior in different parts of
the feature space.

Comparing our approach with LIME (task 2) In the
final study, our goal was to carry out the comparison out-
lined in task 1 between our approach and LIME. However,
preliminary discussions with few test subjects revealed that
the ill-defined subspace notions of LIME make it almost im-
possible to answer questions of the form mentioned above.
We therefore carried out an online survey where we showed
each participant explanations generated using our model and
LIME, and asked them which explanation would they prefer
to use to answer questions of the form mentioned above. We
recruited 12 participants for carrying out this survey and they
unanimously preferred using explanations generated by our
approach to reason about the model behavior.

Conclusions & Future Work
In this paper, we propose MUSE, a framework for ex-
plaining black box classifiers by highlighting how they
make predictions in subspaces characterized by features of
user interest. An interesting research direction would be to
combine our framework with ongoing efforts on extract-
ing interpretable features from images. For example, super-
pixels (Ribeiro, Singh, and Guestrin 2016) output by inter-
mediate layers of deep neural networks can be fed into our
framework to enable explanations of image classifiers. Fur-
thermore, the notions of fidelity, interpretability and unam-
biguity that we outline in this work can be further enriched.
For instance, we could imagine certain features being more
easy to understand than others in which case we can as-
sociate costs with features, and choose explanations with
smaller costs (and more interpretable features). Our opti-
mization framework can easily incorporate these newer no-
tions as long as they satisfy the properties of non-negativity
and submodularity.
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Appendix
Proof for Theorem

Statement: The optimization problem in Eqn. 1 is non-
normal, non-negative, non-monotone, submodular with ma-
troid constraints.
Proof In order to prove that the objective function in Eqn. 1
is non-normal, non-negative, non-monotone, and submodu-
lar, we need to prove the following:

• Prove that any one of the terms in the objective is non-
normal

• Prove that all the terms in the objective are non-negative

• Prove that any one of the terms in the objective is non-
monotone

• Prove that all the terms in the objective are submodular

Non-normality Let us choose the term f1(R). If f1 is nor-
mal, then f1(∅) = 0. Let us check if this holds true:

It can be from the definition of f1 that f1(∅) = Pmax be-
cause the numpreds metric would be 0 in this case as there
are no rules in the empty set. This also implies f1(∅) 6= 0.
Therefore f1 is non-normal and consequently the entire ob-
jective is non-normal.

Non-negativity The functions f1, f2, f3, f5 are non-
negative because first term in each of these is an upper bound
on the second term. Therefore, each of these will always
have a value ≥ 0. In the case of f4 which encapsulates the
cover metric which is the number of instances which sat-
isfy some rule in the approximation. This metric can never
be negative by definition. Since all the functions are non-
negative, the objective itself is non-negative.

Non-monotonicity Let us choose the term f1(R). Let us
consider two approximations A and B such that A ⊆ B.
If f1 is monotonic then, f1(A) ≤ f1(B). Let us see if this
condition holds:

Based on the definition of numpreds metric, it is easy to
note that

numpreds(A) ≤ numpreds(B)

This is because B has at least as many rules as that of A.
This implies the following:

−numpreds(A) ≥ −numpreds(B)

Pmax − numpreds(A) ≥ Pmax − numpreds(B)

f1(A) ≥ f1(B)

This shows that f1 is non-monotone and therefore the entire
objective is non-monotone.

Submodularity Let us go over each of the terms in the
objective and show that each one of those is submodular.

Let us choose the term f1(R). Let us consider two ap-
proximations A and B such that A ⊆ B. If f1 is submod-
ular then, f1(A ∪ e) − f1(A) ≥ f1(B ∪ e) − f1(B) where
e = (q, s, c) /∈ B

Let x be the number of predicates in the rule e = (q, s, c).
This implies that when e is added to eitherA or B, the value
of the numpred metric increases by x i.e.,

f1(A ∪ e)− f1(A) = x = f1(B ∪ e)− f1(B)
This implies that the function f1 is modular and conse-

quently submodular.
Let us choose the term f2(R). Let us consider two ap-

proximations A and B such that A ⊆ B. If f2 is submod-
ular then, f2(A ∪ e) − f2(A) ≥ f2(B ∪ e) − f2(B) where
e = (q, s, c) /∈ B

By definition, featureoverlap(A) ≤
featureoverlap(B) because B has at least as many
rules as A.

Let featureoverlap(A) = x and featureoverlap(B) =
x + ε where ε ≥ 0. When we add e to A, let
featureoverlap(A ∪ e) = y, then featureoverlap(B ∪
e) = y+ ε+ ε′ where ε′ denotes the feature overlap between
the e and the rules that exist in B but not in A Therefore,
ε′ ≥ 0.

f2(A ∪ e)− f2(A) = Omax − y −Omax + x = x− y
f2(B∪e)−f2(B) = Omax−y−ε−ε′−Omax+x+ε = x−y−ε′

This implies that
f2(A ∪ e)− f2(A) ≥ f2(B ∪ e)− f2(B)

Therefore, f2 is submodular.
f3 has a very similar structure to f2 and it can be shown

that it is submodular by following analogous steps as above.
f4 is the cover metric which denotes the number of in-

stances that satisfy some rule in the approximation. This is
clearly a diminishing returns function i.e., more additional
instances in the data are covered when we add a new rule
to a smaller set compared to a larger set. Therefore, this is
submodular.

Consider the function f5, the metric disagreement is ad-
ditive / modular which means each time a rule is added, the
value of disagreement is simply incremented by the number
of data points incorrectly labeled by this rule. Since the met-
ric disagreement is modular, the function f5 is also modular
which implies submodularity.

Constraints: A constraint is a matroid if it has the follow-
ing properties: 1) ∅ satisfies the constraint 2) if two sets A
and B satisfy the constraint and |A| < |B|, then adding an
element e ∈ B, e /∈ A toA should result in a set that also sat-
isfies the constraint. It can be seen that these two conditions
hold for all our constraints. For instance, if an approxima-
tion B has ≤ ε1 rules and approximation A has fewer rules
than B, then the set resulting from adding any element of B
to the smaller setAwill still satisfy the constraint. Similarly,
maxwidth and numdsets satisfy the aforementioned proper-
ties too.



Figure 3: Algorithmic flow of MUSE approach: MUSE takes data, black box model predictions and user’s features of interest.
It outputs customized explanations.

Experiments & Results
Parameter Tuning We set aside 5% of the dataset as a
validation set to tune these parameters. We first initialize the
value of each λi to 100. We then carry out a coordinate de-
scent style approach where we decrement the values of each
of these parameters while keeping others constant until one
of the following conditions is violated: 1) less than 95% of
the instances in the validation set are covered by the result-
ing approximation 2) more than 5% of the instances in the
validation set are covered by multiple rules in the approxi-
mation 3) the labels assigned by the approximation do not
match those of the black box for more than 85% of the in-
stances in the validation set.

We set the λ parameters of IDS in the same way as
discussed above. BDL has three hyperparameters: 1) α
which is the dirichlet prior on the distribution of the class
labels. We set this to 1. 2) λ is the prior on the number of
rules in the decision list and we set it to the same value as
that ε1 in our approach 3) η is the prior on average number
of predicates per rule and we set to the same value as that
of ε2 in our approach. Our approach, IDS, and BDL take
as input candidate sets of conjunctions of predicates. These
candidate sets are generated using Apriori algorithm ()
with a support threshold of 1% which ensures that each
conjunction holds true for at least 1% of the instances in the
data.

Evaluating Interpretability of Customized Explana-
tions To evaluate the interpretability of our explanations
when features of interest are input by end users, we per-
formed a set of experiments in which we simulate user input
by randomly subsampling features of interest. Note that the
baselines IDS, BDL or LIME are not designed to handle end
user input when generating explanations. To benchmark the
performance of our approach with user input, we construct
variants of the baselines IDS and BDL where we first gen-
erate subspaces and then run IDS and BDL independently
on instances belonging to each of these subspaces. Sub-
spaces are generated by enumerating every possible com-
bination of values of the randomly chosen subset of features
(e.g., exercise = yes and smoking = yes, exercise = yes and
smoking = no, exercise = no and smoking = yes, exercise
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Figure 4: Number of rules vs. fidelity on bail data when ap-
proximating a deep neural network with 10 layers

= no and smoking = no). When averaged across 100 runs
(where we randomly subsample features of interest for each
run), we found that at the same level of fidelity, our expla-
nations have about 22.02% and 38.39% fewer rules com-
pared to those produced by variants of IDS and BDL re-
spectively. Our framework also generated explanations with
17.53% and 26.28% decrease in the average width of rules
compared to the variants of IDS and BDL respectively while
maintaining the same level of fidelity. These results clearly
highlight the importance of jointly optimizing the discovery
of subspaces, and the corresponding decision logic rules so
that the resulting explanation is both faithful to the original
model and interpretable.



Dataset # of Data Points Features Classes

Bail Outcomes 86,152 gender, age, current offense details, Released on Bail,
past criminal behavior of defendants Not Released

gender, age, grades, absence rates & tardiness Graduated on Time,
Student Performance 21,713 behavior recorded through grades 6 to 8, Delayed Graduation

suspension/withdrawal/transfer history of students Dropped Out

current ailments, age, BMI, gender, Depression,
Depression Diagnosis 33,458 smoking habits, medical history, Healthy

family medical history of patients

Table 2: Summary of datasets.
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Figure 5: Avg. number of predicates vs. fidelity on bail data
when approximating a deep neural network with 10 layers
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Figure 6: Number of rules vs. fidelity on bail data when ap-
proximating gradient boosted trees (100)
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Figure 7: Avg. number of predicates vs. fidelity on bail data
when approximating gradient boosted trees (100)
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Figure 8: Number of rules vs. fidelity on education data
when approximating SVM
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Figure 9: Avg. number of predicates vs. fidelity on education
data when approximating SVM


